2 Infant Stars Orbit Each other, Flash Like Strobe Lights and Give Clues to New Star Formation
Previous
RANDOM
NASA to Cut 1.3 Billion Dollars From Budget Due to Sequestration Starting March 1st 2013
Next

Curiosity Rover Collects First Martian Bedrock Sample

by William W. on February 9, 2013
NASA

pia16726-640

NASA‘s Curiosity rover has, for the first time, used a drill carried at the end of its robotic arm to bore into a flat, veiny rock on Mars and collect a sample from its interior. This is the first time any robot has drilled into a rock to collect a sample on Mars.

The fresh hole, about 0.63 inch (1.6 centimeters) wide and 2.5 inches (6.4 centimeters) deep in a patch of fine-grained sedimentary bedrock, can be seen in images and other data Curiosity beamed to Earth Saturday. The rock is believed to hold evidence about long-gone wet environments. In pursuit of that evidence, the rover will use its laboratory instruments to analyze rock powder collected by the drill.

“The most advanced planetary robot ever designed is now a fully operating analytical laboratory on Mars,” said John Grunsfeld, NASA associate administrator for the agency’s Science Mission Directorate.

“This is the biggest milestone accomplishment for the Curiosity team since the sky-crane landing last August, another proud day for America.”

For the next several days, ground controllers will command the rover’s arm to carry out a series of steps to process the sample, ultimately delivering portions to the instruments inside.

“We commanded the first full-depth drilling, and we believe we have collected sufficient material from the rock to meet our objectives of hardware cleaning and sample drop-off,” said Avi Okon, drill cognizant engineer at NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

Rock powder generated during drilling travels up flutes on the bit. The bit assembly has chambers to hold the powder until it can be transferred to the sample-handling mechanisms of the rover’s Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA) device.

Before the rock powder is analyzed, some will be used to scour traces of material that may have been deposited onto the hardware while the rover was still on Earth, despite thorough cleaning before launch.

“We’ll take the powder we acquired and swish it around to scrub the internal surfaces of the drill bit assembly”

said JPL’s Scott McCloskey, drill systems engineer. “Then we’ll use the arm to transfer the powder out of the drill into the scoop, which will be our first chance to see the acquired sample.”

“Building a tool to interact forcefully with unpredictable rocks on Mars required an ambitious development and testing program,” said JPL’s Louise Jandura, chief engineer for Curiosity’s sample system. “To get to the point of making this hole in a rock on Mars, we made eight drills and bored more than 1,200 holes in 20 types of rock on Earth.”

Inside the sample-handling device, the powder will be vibrated once or twice over a sieve that screens out any particles larger than six-thousandths of an inch (150 microns) across. Small portions of the sieved sample will fall through ports on the rover deck into the Chemistry and Mineralogy (CheMin) instrument and the Sample Analysis at Mars (SAM) instrument. These instruments then will begin the much-anticipated detailed analysis.

The rock Curiosity drilled is called “John Klein” in memory of a Mars Science Laboratory deputy project manager who died in 2011. Drilling for a sample is the last new activity for NASA’s Mars Science Laboratory Project, which is using the car-size Curiosity rover to investigate whether an area within Mars’ Gale Crater has ever offered an environment favorable for life.

JPL manages the project for NASA’s Science Mission Directorate in Washington.

William W.
I am an amateur astronomer with a focus on astrophotography and deep space objects. I have 15+ years in the web publishing business and over 20 years as a space enthusiast. I enjoy reading and writing about the amazing discoveries of brilliant scientists and engineers.
 
READ MORE

Telsa Motors Launches Battery Swap Pilot Program

 
READ MORE

SpaceX Completes First Milestone for Commercial Crew Transportation System

 
READ MORE

NASA Awards SpaceX Launch of Transiting Exoplanet Survey Satellite


 
READ MORE

NASA Rover Finds Active and Ancient Organic Chemistry on Mars

 
READ MORE

Venus Express goes gently into the night

 
READ MORE

NASA’s MAVEN Mission Identifies Links in Chain Leading to Atmospheric Loss


 
READ MORE

NASA Tests Software That May Help Increase Flight Efficiency, Decrease Aircraft Noise

 
READ MORE

SpaceX set to create 300 new US jobs

 
READ MORE

Lockheed Martin Wins Medium Lift Contract in Alaska


 
READ MORE

Arianespace’s upcoming Soyuz mission receives its “identity” at the Spaceport

 
READ MORE

U.S. Geological Survey releases highest-resolution geologic map of Mars

 
READ MORE

NASA All About That Space – All About That Bass Parody Music Video


 
READ MORE

Warm Gas Pours ‘Cold Water’ on Galaxy’s Star-Making

 
READ MORE

Scientists Warn That Cosmic Rays Will Threaten Future Deep-Space Astronaut Missions

 
READ MORE

New Horizons Pluto probe wakes up after 1,873 days in hybernation


Load More
End of the line!
Fonts by Google Fonts. Icons by Fontello. Full Credits here »